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§ Expansion of the solar corona in interplanetary space
§ Best natural laboratory of astrophysical plasmas, which can be explored with space missions  

The solar wind

§ Essentially electrons and protons (~5% of heavier ions)
§ Supersonic and superalfvénic in interplanetary space (mean speed ~500 km/s)
§ Mean temperature (e-,p+) at 1 AU ~20 eV 
§ Mean density at 1 AU ~5 cm-3

§ Few collisions (1 collision/1 AU) ⇒ viscosity ~ 0 ⇒magnetic field is frozen in plasma



Interplanetary magnetic field

Fast wind

Slow wind

Parker Spiral

Magnetic field is turbulent
[McComas et al., GRL, 1998]



Locally unpredictable, but statistical properties 
are predictable and universal 

Turbulence?

Energy cascade in the Fourier space (Kolmogorov, 1941): 
§ velocity field energy has a universal spectrum ~ k-5/3 

§ inertial range: scale invariance, same physics at all scales l

injection
Inertial 
range

dissipation

L

ld

Leonardo da Vinci, 
Studies of water (1510-1512)

The fall of a stream of water from a sluice into a pool



Intermittency in fluid turbulence

PDF(dv)

dvl=v(r+l)-v(r)

Small scale

Large scale

§ Scale dependent non-Gaussianity of turbulent fluctuations 
§ Appearance of coherent structures

[She et al., 1991]

Filaments of vorticity (3D HD simulations & observations)
§ length ~ Linjection (L)
§ cross-section ~ Ldissipation (ld)

[S. Douady, Y. Couder, and 
M. E. Brachet, PRL, 1991]



Turbulence in space plasmas
B0plasma (MHD)

1. Presence of a mean magnetic field B0 ⇒ anisotropy of turbulent fluctuations 
2. Plasma waves: Alfvén, magnetosonic, mirror, whistlers, kinetic Alfvén waves (KAW), etc… 

(wave turbulence) 
3. Nearly no collisions : mean free path ~ 1 AU 
4. In plasmas there is a number of characteristic space and temporal scales

hydrodynamics
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Scales

Frozen-in magnetic field

Plasma scales (solar wind at 1 AU)
§ Larmor radius (ri,e) and cyclotron frequency (Wci,e) of a charged particle 

(electron or ion=proton) in a magnetic field B:

§ Inertial length li,e (demagnetization scale of particles) and plasma frequency (wp) :

§ Debye length lD (sphere of influence of a given test charge in a plasma);
at L>lD plasma is quasi-neutral :

B
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Turbulence in space plasmas
B0plasma (MHD)

1. Presence of a mean magnetic field B0 ⇒ anisotropy of turbulent fluctuations 
2. Plasma waves: Alfven, magnetosonic, mirror, whistlers, kinetic Alfven waves (KAW), etc… 

(wave turbulence) 
3. Nearly no collisions : mean free path ~ 1 AU 
4. In plasmas there is a number of characteristic space and temporal scales

hydrodynamics

§ Is there a certain degree of generality in space plasma turbulence ? 
§ Similarities with HD (spectra & intermittency)? 



Magnetic turbulent spectrum in the solar wind

Taylor hypothesis: !obs = k ·V = kV cos(⇥kV )

!obs = kV ! k = 2⇡f/V f-5/3 ~ k-5/3

Example of satellite data:

[Lion et al. 2016]

Magnetic fluctuations cover 8 decades in frequencies/scales 
and ~14 decades in power spectral density:

[Kiyani et al., 2015] 

!obs = !0 + k ·V

Kolmogorov scaling 
within the inertial range 

(5/3= 1.67)

[Alexandrova et al. 2012]



Magnetic turbulence and wave vector anisotropy
Solar Wind Turbulence and the Role of Ion Instabilities

Fig. 1 Trace of the spectral
matrix of magnetic field
corresponding to the field being
parallel (θBV ∈ [0,10]◦) and
perpendicular (θBV ∈ [80,90]◦)
to the plasma flow are shown by
blue lines, the total Fourier
spectrum is shown in gray. The
field-perpendicular spectrum P⊥
dominates turbulence within the
inertial range, it follows a
power-law with the spectral index
−5/3. The field-parallel
spectrum P∥ has lower power, is
steeper and has the spectral slope
−2. At the energy injection scales
f < 5 · 10−4 Hz (kρi < 2 · 10−3)
the fluctuations are isotropic and
their spectrum follows ∼ f −1.
Courtesy of R. Wicks. The same
figure as a function of kρi can be
found in Wicks et al. (2010)

AU from the Sun). As the spacecraft only measures wave vectors k parallel to Vsw, for
small flow-to-field angles θBV ∈ [0,10]◦, P∥ (nT2/Hz) represents an E(k∥) spectrum, and
for quasi-perpendicular angles θBV ∈ [80,90]◦, P⊥ (nT2/Hz), is the proxy of E(k⊥). The
total Fourier power, without separation into different angles is also shown. Within the en-
ergy injection range, the fluctuations are found to be isotropic, P∥ ≃ P⊥, and both spectra
follow an ∼ f −1 power-law in agreement with previous observations (Bruno and Carbone
2005). In the inertial range one observes a bifurcation of the two spectra: the perpendicular
spectrum follows the Kolmogorov’s slope, E(k⊥) ∼ k

−5/3
⊥ , while the parallel spectrum is

steeper, E(k∥) ∼ k−2
∥ . This result, initially seen in fast wind measured by Ulysses (Horbury

et al. 2008) has been confirmed by several other studies (Podesta 2009; Luo and Wu 2010;
Wicks et al. 2010, 2011; Chen et al. 2011a). These magnetic field spectral scaling obser-
vations provide an intriguing, if not unequivocal, connection to the Goldreich-Sridhar the-
ory (Higdon 1984; Goldreich and Sridhar 1995). It is important to notice that the spectral
anisotropy, shown in Fig. 1, is only observed while the local anisotropy analyses is used
(Horbury et al. 2008). Such analysis consists in following the magnetic field direction as
it varies in space and scale, which may cause the measured spectra to contain higher order
correlations (Matthaeus et al. 2012).

The importance of the local field for the turbulence anisotropy analysis has been pointed
out already in Cho and Vishniac (2000), Maron and Goldreich (2001), Milano et al. (2001).
The method proposed by Horbury et al. (2008), and used by Wicks et al. (2010) in Fig. 1, is
equivalent in some sense to the one used in Milano et al. (2001) for numerical simulations,
but can appear contradictory with the requirement of the ergodic theorem (equivalence be-
tween space and time averaging).5 However, there are practical implications that have to be
considered: an individual packet of plasma passes a spacecraft once and never returns, mean-
ing that the average magnetic field direction over many correlation lengths measured from
a time series is not necessarily representative of the actual magnetic field direction at any

5In order to insure the equivalence between space and time averaging, the average should be taken over
several correlation lengths, i.e. several energy injection lengths.
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total Fourier power, without separation into different angles is also shown. Within the en-
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∥ . This result, initially seen in fast wind measured by Ulysses (Horbury

et al. 2008) has been confirmed by several other studies (Podesta 2009; Luo and Wu 2010;
Wicks et al. 2010, 2011; Chen et al. 2011a). These magnetic field spectral scaling obser-
vations provide an intriguing, if not unequivocal, connection to the Goldreich-Sridhar the-
ory (Higdon 1984; Goldreich and Sridhar 1995). It is important to notice that the spectral
anisotropy, shown in Fig. 1, is only observed while the local anisotropy analyses is used
(Horbury et al. 2008). Such analysis consists in following the magnetic field direction as
it varies in space and scale, which may cause the measured spectra to contain higher order
correlations (Matthaeus et al. 2012).

The importance of the local field for the turbulence anisotropy analysis has been pointed
out already in Cho and Vishniac (2000), Maron and Goldreich (2001), Milano et al. (2001).
The method proposed by Horbury et al. (2008), and used by Wicks et al. (2010) in Fig. 1, is
equivalent in some sense to the one used in Milano et al. (2001) for numerical simulations,
but can appear contradictory with the requirement of the ergodic theorem (equivalence be-
tween space and time averaging).5 However, there are practical implications that have to be
considered: an individual packet of plasma passes a spacecraft once and never returns, mean-
ing that the average magnetic field direction over many correlation lengths measured from
a time series is not necessarily representative of the actual magnetic field direction at any

5In order to insure the equivalence between space and time averaging, the average should be taken over
several correlation lengths, i.e. several energy injection lengths.

‘Critical Balance’ model [Goldreich and Sridhar, 1995]: 
§ Incompressible Alfvénic turbulence (dB~dV)
§ Balance between linear Alfvén time (along B0) 

and non-linear time (in plane perp. to B0)

⌧A =
`k
VA

⇠ ⌧NL =
`?
�V?

P (k?) ⇠ k�5/3
? ; P (kk) ⇠ k�2

k

B0 VSlab

V

B02D

§ But, observations show that 
§ Velocity spectra do not follow 

magnetic spectra (expected for 
Alfven waves)  

§ Compressibility…  

!obs = k ·V = kV cos(⇥kV )



Magnetic turbulent spectrum in the solar wind

[Kiyani et al., 2015] 

[Alexandrova et al. 2012]
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[Wicks et al., 2010] 



MHD scales: inertiel 
range~ Kolmogorov

Ion scales

[Leamon et al,1998] Wind/MAG 

Dissipation 
range ~ exp

HD

1. MHD scales: f-5/3 spectrum 
2. There exist a spectral “break” close to ion scales Þ
§ starting point of a small scale cascade [e.g., Biskamp et al, 1996; Galtier, 2006; Alexandrova
et al. 2007, 2008, 2013] or
§ onset of dissipation range [e.g., Leamon et al., 1998, 1999, 2000; Smith et al., 2006,…]?
§ If dissipation range ÞWhy a power law and not an exponential cut-off ?

Magnetic turbulent spectrum
Inertial range – ion scales



1. Well defined spectrum within the inertial range
2. Spectral index at ion scales is very variable: between -2 and -4 (no general behavior) 

Magnetic turbulent spectrum
Inertial range – ion scales

[Smith et al., 2006]

§ What happens at higher frequencies not resolved by MAG instruments?

MHD scales: inertiel 
range~ Kolmogorov

Ion scales

[Leamon et al,1998] Wind/MAG 



Helios mission DLR/NASA 1974-1984

§ Radial evolution between 0.3 and 1.0 AU
§ Magnetic field measurements with MAG and SCM  
§ Spectral break around the gap at ion scales (2-4.7 Hz) 
§ For f > 4.7 Hz (sub-ion scales) and up to 400 Hz, 
spectral index of ~3 is observed at 0.3 AU

[Burlaga, 2001]

[Denskat et al., 1983]



Cluster mission ESA/NASA, 4 s/c, since 2000

Magnetosheath

Solar wind

§ Multi-satellite mission to study magnetosphere/solar wind connection
§ Cluster is in the free solar wind when the field/flow angle is quasi-perpendicular (QBV > 65o)
§ Otherwise, Cluster is connected to the bow-shock => shock physics and not solar wind turbulence.  
§ Thus, with Cluster we can resolve kperp fluctuations
§ STAFF (LPP/LESIA) is the most sensitive instrument by today to measure kinetic plasma scales

B



Magnetic spectra at kinetic scales in the solar wind

[Alexandrova et al. 2009, 2012] [Sahraoui et al., 2009, 2013]
[Lacombe et al. 2014

Jagarlamudi et al., 2020]

It seems that the spectra are not universal at all…



Background turbulence vs whistler waves

Breaks & Bumps: whistlers 
with k||B, f ~ (0.1-0.3)fce

background turbulence 
with k ⊥ to B and f~0 
[Lacombe et al. 2017]

[Lacombe et al. 2014
Kajdic et al. 2016
Roberts et al. 2017]



[Alexandrova et al. 2009, PRL; 2013, SSR] 

MHD Ion 
scales

Electron
scales

Turbulent spectrum from MHD to electron scales

§ Superposition of different spectra at sub-ion scales seems to indicate 
general behaviour : spectrum ~kperp

-2.8

§ End of the cascade? Dissipation scales?
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[Alexandrova et al. 2009, PRL] Cluster/FGM+STAFF data

Dissipation scale?

Quasi-stationary turbulence
§ energy transfer rate e = energy dissipation rate ed
§ e = h3 ld -4 , where ld is dissipation scale, h is viscosity
§ amplitude of the spectrum P0~e2/3~ ld -8/3

`d ⇠ ⇢e

?



Universal Kolmogorov’s function
[Frisch, Turbulence: the legacy of Kolmogorov, 1995]

E(k)⇥d/�
2 = F (k⇥d)

`d: dissipation scale

⌘: viscosity

In HD turbulence, this normalization 
collapses spectra measured under 
different conditions.



Universal Kolmogorov’s function:

§ Assumption: h=Const
§ κri & κli - normalizations are not efficient for collapse
§ κre normalization bring the spectra close to each other 

[Alexandrova et al., 2009, PRL]`d ⇠ ⇢e

Dissipation scale?

with dissipation scale ⇤d = ⇥i,e,�i,e

Let us try to apply this kind of normalization for solar wind spectra 
and for different candidates for the dissipation scale:  

E(k)⇥d/�
2 = F (k⇥d)



Larger statistical study with Cluster/STAFF
[Alexandrova et al., 2012, APJ]

`d ⇠ ⇢e

[Chen, et al., 1993, PRL] dissipation range spectrum in fluids: 
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E(k) = Ak�↵ exp (�k`d)



General spectrum at kinetic scales

§ For different solar wind conditions we find a 
general spectrum with “fluid-like” roll-off 
spectrum at electron scales

§ Electron Larmor radius seems to play a role of 
the dissipation scale in collisionless solar wind 
[Alexandrova et al., 2009 PRL, 2012 APJ] 

E(k) = Ak�8/3 exp(�k�e)

§ Recently, we find similar spectrum closer 
to the Sun at 0.3 AU, indicating 
universality of the phenomenon 
[Alexandrova et al. 2020, under revision] 



Kinetic spectra closer to the Sun

[Alexandrova, Jagarlamudi
et al. 2020, under review]

§ We expect that the spectral properties we observe are generic for 
space plasmas turbulence at sub-ion to electron scales. 

§ First part of kinetic spectrum (up to ~100 Hz) has been already 
observed by PSP at 0.17 AU [Bale et al., 2019, Bowen et al. 2020].

NB: PSP/SCM noise is the same as the one at Solar Orbiter/SCM… 

<latexit sha1_base64="P9OyHAAXi5Iwvrh+okAkT6hGik4="></latexit>

f⇢e =
V

2⇡⇢e

What is ‘behind’ this spectrum?



Physics of the solar wind turbulent cascade 

§ Inertial range: Alfven waves propagating from the Sun, 
Critically Balanced turbulence (tA =tNL)

§ Ion transition: Alfven waves become Kinetic Alfven Waves 
(KAWs), e.g., Schekochihin et al., 2009, Howes et al. 2006, 
2008, 2011, Salem et al. 2012, … 

§ Sub-ion scales: Critically Balanced KAW turbulence (tKAW ~ 
tNL), e.g., Boldyrev and Perez 2012, TenBarge et al. 2013, 
Howes et al.,… 

§ Dissipation: Landau damping of KAWs, e.g., Howes et al. 
2011, TenBarge et al. 2013, Passot & Salem 2015, Schreiner & 
Saur, 2017

[TenBarge et al. 2013, APJ]



Solar wind turbulence : widely accepted picture 
§ Inertial range: Alfven waves propagating from the Sun, Critically Balanced turbulence (tA =tNL)
§ Ion transition: Alfven waves become Kinetic Alfven Waves (KAWs), e.g., Schekochihin et al., 09
§ Sub-ion scales: Critically Balanced KAW turbulence (tKAW ~ tNL), e.g., Boldyrev and Perez 12
§ Dissipation: Landau damping of KAWs, e.g., Howes et al. 11, TenBarge et al. 2013, Passot & Salem 15, 
Schreiner & Saur, 17

Linear dispersion of KAWs describes the 
data [Sahraoui et al. 10, Roberts et al., 13]

Compressibility in agreement with 
KAWs [Lacombe et al. 17, Groselji
et al. 19, Matteini et al. 20]

This picture is based on mean properties of turbulent flows, e.g.,:
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Intermittency in all this ? 



II. Intermittency in space plasma turbulence

Methods for Characterising Microphysical Processes in Plasmas

Fig. 2 Deviation of the PDFs from Gaussian statistics with scale: signature of intermittency in the inertial
scale of the solar wind magnetic field (Sorriso-Valvo et al. 1999). Left panels for fast solar wind, right panels
for slow solar wind

The tails of the PDF are of particular interest, because the distribution of rare events is
indicative of the nature of underlying physical process. However, the practical assessment of
such tails is a delicate task, and so moments of the PDF often receive more interest than the
PDF itself. The moments of P(|∆yτ |) are called structure functions and can be estimated
directly from the time series as

Sp(τ ) =
∫ +∞

−∞
P

(
|∆yτ |

)∣∣∆yτ (t)
∣∣p dt =

〈∣∣∆yτ (t)
∣∣p〉

, (6)

where ⟨· · ·⟩ denotes ensemble averaging. Equation (5) implies that the structure functions
should scale with τ as

Sp(τ ) ∝ τ ζp . (7)

For statistically self-similar processes, the scaling exponents ζp are a linear function of the
order p; deviations from this linear behaviour can thus be used as a quantitative measure
of departure from self-similarity. There is considerable experimental evidence that turbulent
flows deviate from this behaviour (Frisch 1995).

Solar wind and laboratory data have been extensively studied by structure function
analysis, showing the presence of intermittency (Carbone 1994; Tu and Marsch 1995;
Carbone et al. 2000; Antar et al. 2001; Bruno and Carbone 2005; Matthaeus and Velli 2011).
The evaluation of structure functions is straightforward, but there are pitfalls. The main dan-
ger is the increasing sensitivity of structure functions to rare and large events when the order
p increases, until finite sample effects completely dominate. This often goes unnoticed as
the structure function increases smoothly with order. As a rule of thumb, it is considered
safe to compute structure functions up to order

pmax = logN − 1, (8)

[Sorriso-Valvo et al. 1999]
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[She et al., 1991]

Definition of coherent structure

2. Inspired by Fiedler (1988) & Lesieur (1993)
§ High amplitude event localized in space
§ Delocalisation in Fourier space
§ Phase coupling over a large range of scales 
§ Particular topology
§ Life time ≫ life time of random fluctuations

at the smallest scale of the structure

1. Farge & Schneider (2015): ‘Everything that is not noise’ 



Looking for signatures of coherent structures
Increments of magnetic field and Partial Variance of Increments (PVI) Method

[e.g., Veltri & Mangeney 1999, Servidio, et al. 2008, 
Greco, et al. 2009, 2012, 2014, Perri et al. 2012]

§ Are there other types of structures? 



[Rossi, Tesi di Lauria, 2011; Hada et al. 2003; Koga & Hada, 2003; Sahraoui, 2008, Einaudi & Velli 1999]

Non-Gaussianity: what does it mean?
Cluster-1/STAFF-SC measurements, 2002-02-19

FT

From the observed signal we construct a signal with random phases 
but with the same spectrum.  

Observed
signal

FT-1

Random
phase signal

Phases:

Mixed phases:



[Claudia Rossi, Tesi di Laurea, 2011]

Non-Gaussian tails ⇔ coupled phases!

Observed
signal

Random
phase 
signal

Non-Gaussianity: what does it mean?



Local Intermittency Measure (LIM)

Morlet Wavelet Transform

We observe 
- stalactite-like events in wavelet scalogram

W2(t,t), see 2nd panel 
- Vertical lines in LIM, see 3rd panel

Wavelet transform and Local Intermittency Measure

[Farge 1992] 
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Observed signal vs random phase signal

§ LIM of Bx,rand: homogeneous energy distribution of the signal in time-scale plane
§ Thus, vertical lines in LIM of Bx,obs correspond to events with coupled phases ⇒ coherent structures?



Signatures of coherent structures from MHD to electron scales 

f-1

f-5/3

§ Vertical lines in LIM : signatures of coherent structures
§ They are visible from the onset of the inertial range at ~3·103 s 
and up to the smallest resolved scales around electron Larmor radius re

[Lion et al. 2016]
Wind/MAG 1h

[Inna Orel, Master Thesis 2017]
~3 min of Cluster/STAFF data

Wind/MAG 9 days of data

Energy injection scales – inertial range Inertial range-ion scales Kinetic plasma scales

time

fci

fb

fri

[Lion et al. 2016]
Wind/MAG 1h



Coherent structures within the inertial range

At the times of events, 
in physical space we see 
• current sheets
• Alfven vortices  
(oblique QBV)  

[Lion, Alexandrova & Zaslavskiy, 2016, APJ]

dB/B0=0.7

current sheet Alfven vortex 

time

fci

fb

fri



Vector potential, A, ~ to stream function Þ field lines || stream lines & 
current || vorticity [Petviashvilli & Pokhotelov, 1992]

Alfven vortices ~ 2D incompressible HD vortices

Monopole ~ force free 
current, standing structure

Dipole ~ two inversed 
currents, propagates 
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can correspond to a mirror mode. At the same time, within

the range of the Alfvén vortices [0.5, 2.0]Hz, S✓/S decreases
to a negligibly small value 0.03, reflecting the incompress-

ible nature of the vortices. It seems that the appearance of

the Alfvén vortices in a finite beta plasma (here ⇥⌥1) makes
it incompressible within the vortices. A statistical study over

⌥30 magnetosheath samples shows (i) a systematic decrease
of S✓/S within the spectral knee range, and (ii) Alfvén vor-
tices are observed for not too large ⇥, ⇥<3 (Alexandrova et

al., in preparation4).

3 The Alfvén vortex and its spectral properties

The Alfvén vortices are multi-scale nonlinear structures and

one may wonder how they can influence the turbulent spec-

trum (M. Berthomier, private communication, 2006), even

outside the observed spectral “knee”.

In this section, we begin by a short review of the main

theoretical features of the model of incompressible Alfvén

vortex (Petviashvili and Pokhotelov, 1992; Kadomtsev and

Pogutse, 1974), since it is not so well known in the space

physics community. Second, we analyze the spectra of two

topologically independent vortex solutions, monopole and

dipole. Finally, we discuss the spectral properties of a pe-

riodic vortex network.

3.1 Alfvén vortex solutions

The Alfvén vortex is one of the non-linear solutions of the

ideal incompressible MHD equations. It is characterized by

magnetic field and velocity fluctuations mostly perpendicular

to the unperturbed magnetic fieldB0 (taken here as parallel to

the z direction), ⌅Bz�⌅B✏ and ⌅Vz�⌅V✏; they have a slow
time dependence, ⌘t�◆ci , and their space variations verify

⌘z�✏. Their amplitude �⌥⌅B✏/B0 is assumed to be small

although finite, 0<�<1 and they satisfy the following scaling

relations:

⌘z

✏
⌥ ⌘t

VA✏
⌥ ⌅Bz

⌅B✏
⌥ ⌅Vz

⌅V✏
⌥ ⌅B✏

B0
⌥ ⌅V✏

VA
⌥ �. (6)

The transverse fluctuations can then be described by two

scalar functions, the parallel component of the vector poten-

tial Az and a flux function ↵

⌅B✏ = Az ⇥ z, ⌅V✏ = z⇥ ↵ (7)

(in the following the symbol ⌅ will be omitted).

For the scalar variables Az and ↵ the MHD equations

 (⌘t + V · )V = �p + 1

4�
( ⇥ B) ⇥ B (8)

⌘tB =  ⇥ (V⇥ B) (9)

 · V = 0 ;  · B = 0 (10)

4Alexandrova, PhD thesis, 2005.

reduce to two non-linear scalar equations (Kadomtsev and

Pogutse, 1974; Strauss, 1976; Petviashvili and Pokhotelov,

1992), the conservation of the momentum along z

⌘t2
✏↵+{↵, 2

✏↵}= 1

4� 
{Az, 2

✏Az}�
B0

4� 
⌘z2

✏Az (11)

and the Maxwell-Faraday equation in the plane perpendicu-

lar to z

⌘tAz + B0⌘z↵ + {↵, Az} = 0. (12)

Here the notation {., .} corresponds to the Poisson bracket (or
the Jacobian)

{a, b}=⌘xa⌘yb�⌘ya⌘xb⌅(a⇥b)·z.
These equations can be written in dimensionless form,

using new variables t=◆ci t , r✏ = r✏/ i , z=z/(c/�pi),

 = / 0, ⇣=↵/( 2i ◆ci), A=AzVA/(B0 
2
i ◆ci)

dt2
✏⇣ = {A, J } � ⌘zJ (13)

dtA + ⌘z⇣ = 0 (14)

where J=2
✏A is the longitudinal current and

dt⌅⌘t+V✏·✏.

The Alfvén vortices are solutions which are localized in a

plane nearly perpendicular to z and propagate with a speed

u in this plane while conserving their shape. Choosing the

variables in the vortex plane x and ⇧, with

⇧ = y + �z � ut, � = tan(�), (15)

� being the angle between the normal to the plane (x, ⇧)

and B0, we arrive to a two dimensional problem. In the new

variables (x, ⇧) the Eqs. (13) and (14) become

{⇣ � ux, 2
✏(⇣ � ux)} = {A � �x, J } (16)

{⇣ � ux, A � �x} = 0 (17)

with the new Poisson bracket {a, b}=⌘xa⌘⇧b�⌘⇧a⌘xb.

Equation (17) means that (⇣�ux) and (A��x) are depen-

dent on one another:

A � �x = f (⇣ � ux) (18)

so that Eq. (16) leads to an equation for (⇣�ux)

2
✏(⇣ � ux) = f �(⇣ � ux)J + f1(⇣ � ux), (19)

containing two arbitrary functions, f and f1. There is, there-

fore, an infinite number of solutions of the system (16) and

(17) in the form of vortices.

Among this infinite set of solutions, the simplest Alfvén

vortex solution is localized in a circle of the radius a in the

plane (x, ⇧), and decays at infinity as a power law. It satisfies

a generalized Alfvén relation

⇣ = ⌥A, with ⌥ = u

�
(20)

www.nonlin-processes-geophys.net/15/95/2008/ Nonlin. Processes Geophys., 15, 95–108, 2008

§ First time observed in space plasmas in the Earth’s magnetosheath [Alexandrova, Mangeney et al., 
2004,  2006, JGR] thanks to 4 satellites of Cluster (and to wavelet transform)

§ Then signatures of vortices observed in the Saturne’s magnetosheath [Alexandrova & Saur 2008] 



Spectral properties of Alfvén vortices

a-1 a-1

§ Spectral knee at k=a-1 ; power law spectra above it 
§ Monopole ÞdB2~k-4 (due to discontinuity of the current)
§ Dipole ÞdB2~k-6 (due to discont. of the current derivative)

Vortex radius a=1
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Fig. 2. The surface of the current J above the vortex plane (x, ⇧)

and the contours of the potential A (that coincide here with the field

lines) in this plane for the monopolar structure with the radius of

localization a=1 and angle �=0.

where � and u can be zero only simultaneously. Its current

density J is a linear function of A��x inside a circle of ra-

dius a and vanishes outside
�

J = �k2(A � �x � c), r < a

J = 0, r ⌃ a
(21)

where k and c are constants. This solution is
⇥
⌅

⇤
A = A0(J0(kr) � J0(ka)) � 2�x

kr

J1(kr)

J0(ka)
+ �x, r < a

A = a2 �x
r2

, r ⌃ a.
(22)

Here A0 is a constant amplitude, J0 and J1 are the Bessel

functions of 0th and 1st order respectively, r=
⌥

x2+⇧2 is

the radial variable in the plane of the vortex.

The continuity of the solution (22) in r=a requires that

the parameter k and the radius a be coupled by the following

dispersion relation

J1(ka) = 0. (23)

This relation ensures the continuity of the magnetic field

B✏=(Bx, B⇧)=(⌘⇧A, �⌘xA) in r=a as well as a vanishing

divergence of B✏ everywhere.
Going back to the 3-D problem we must respect the fol-

lowing conditions: since ⌘z�✏ has to be satisfied, the an-
gle must be small, �⌥⌘z/✏⌥�. Similarly, the velocity u

must be also small in order to satisfy the condition ⌘t�◆ci ,

i.e. u⌥⌘t /◆ci⌥�. In principle, ⌥ is arbitrary, but of the order

of 1.

The Alfvén vortex solution (22) is the analogue of the in-

compressible unmagnetized hydrodynamic vortex solution,

and as in hydrodynamics, we distinguish here to types of vor-

tices: monopole and dipole.

The monopolar vortex solution correspond to the case with

�=0 (u=0), i.e., when the projection of the mean field to

Fig. 3. The same as Fig. 2 but for the bipolar vortex structure with

a=1, �=5⇤, here the current and field lines are symmetric with
respect to the line x=0 as far as the amplitude of the monopolar
part of the vortex is chosen to be A0=0.

the vortex plane is zero. This vortex is at rest in the plasma

frame. It corresponds to a field-aligned force-free current

localized within a circle of the radius a
�

A = A0(J0(kr) � J0(ka)), r < a

A = 0, r ⌃ a.
(24)

The monopole has the current J and the field lines as is

shown in Fig. 2. The contours of its magnetic field com-

ponents are shown in Fig. 4 (upper panels).

As soon as � �=0 (u�=0), the general solution (22) describes
the dipolar vortex. It is not stationary in the plasma as

the monopole, but propagates with velocity u along the ⇧-

direction, the direction of the mean field projection on the

vortex plane. The current of the dipolar vortex and its field

lines are presented in Fig. 3. Here the amplitude of monopo-

lar part A0 is chosen to be zero, otherwise A, J and the mag-

netic field lines are no more symmetric with respect to the

vortex center. The contours of its magnetic field components

are shown in Fig. 4 (lower panels).

Thus monopolar and dipolar vortices are topologically dif-

ferent and there is no continuous transition between them.

These differences reflect themselves in the Fourier spectra of

these two vortex types.

3.2 Power spectra of monopole and dipole

Suppose now that a magnetic probe moves in space, along

the x-axis with a constant velocity and a distance of closest

approach to the vortex axis ⇧. Figure 5 (upper panels) shows

the “measured” Bx-profiles of monopole and dipole vortex

structures, for ⇧=�0.2a. The lower panels of Fig. 5 show
the power spectral densities (PSD) of these signals calculated

via Fourier (solid lines) and via the Morlet Wavelet Trans-

forms (empty circles). The power spectra of both, monopole

and dipole, have a knee around the wave vector k = 1,

Nonlin. Processes Geophys., 15, 95–108, 2008 www.nonlin-processes-geophys.net/15/95/2008/
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dius a and vanishes outside
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kr
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J0(ka)
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(22)

Here A0 is a constant amplitude, J0 and J1 are the Bessel

functions of 0th and 1st order respectively, r=
⌥

x2+⇧2 is

the radial variable in the plane of the vortex.

The continuity of the solution (22) in r=a requires that

the parameter k and the radius a be coupled by the following

dispersion relation

J1(ka) = 0. (23)

This relation ensures the continuity of the magnetic field

B✏=(Bx, B⇧)=(⌘⇧A, �⌘xA) in r=a as well as a vanishing

divergence of B✏ everywhere.
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must be also small in order to satisfy the condition ⌘t�◆ci ,

i.e. u⌥⌘t /◆ci⌥�. In principle, ⌥ is arbitrary, but of the order

of 1.

The Alfvén vortex solution (22) is the analogue of the in-

compressible unmagnetized hydrodynamic vortex solution,

and as in hydrodynamics, we distinguish here to types of vor-

tices: monopole and dipole.

The monopolar vortex solution correspond to the case with

�=0 (u=0), i.e., when the projection of the mean field to

Fig. 3. The same as Fig. 2 but for the bipolar vortex structure with

a=1, �=5⇤, here the current and field lines are symmetric with
respect to the line x=0 as far as the amplitude of the monopolar
part of the vortex is chosen to be A0=0.

the vortex plane is zero. This vortex is at rest in the plasma

frame. It corresponds to a field-aligned force-free current

localized within a circle of the radius a
�

A = A0(J0(kr) � J0(ka)), r < a

A = 0, r ⌃ a.
(24)

The monopole has the current J and the field lines as is

shown in Fig. 2. The contours of its magnetic field com-

ponents are shown in Fig. 4 (upper panels).

As soon as � �=0 (u�=0), the general solution (22) describes
the dipolar vortex. It is not stationary in the plasma as

the monopole, but propagates with velocity u along the ⇧-

direction, the direction of the mean field projection on the

vortex plane. The current of the dipolar vortex and its field

lines are presented in Fig. 3. Here the amplitude of monopo-

lar part A0 is chosen to be zero, otherwise A, J and the mag-

netic field lines are no more symmetric with respect to the

vortex center. The contours of its magnetic field components

are shown in Fig. 4 (lower panels).

Thus monopolar and dipolar vortices are topologically dif-

ferent and there is no continuous transition between them.

These differences reflect themselves in the Fourier spectra of

these two vortex types.

3.2 Power spectra of monopole and dipole

Suppose now that a magnetic probe moves in space, along

the x-axis with a constant velocity and a distance of closest

approach to the vortex axis ⇧. Figure 5 (upper panels) shows

the “measured” Bx-profiles of monopole and dipole vortex

structures, for ⇧=�0.2a. The lower panels of Fig. 5 show
the power spectral densities (PSD) of these signals calculated

via Fourier (solid lines) and via the Morlet Wavelet Trans-

forms (empty circles). The power spectra of both, monopole

and dipole, have a knee around the wave vector k = 1,
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Thus, high amplitude 
monopolar Alfven vortex 
present in the signal can 
explain the steep (-4) spectrum 
at ion scales in [Leamon 1998], 
reanalysed by Lion [2016]: 

[Alexandrova 2008 NPG]



Alfven vortices observed in the solar wind 
with 4 satellites of Cluster

Slow solar wind [Roberts et al. 2016],
see also [Perrone et al. 2016]

∆r/ρp=   5.5, ρp=   98.8km, βp= 0.6
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Fast solar wind [Perrone et al. 2017]
- kperp >> k||
- axis aligned with B0
- convected by the flow

V

B0



Other types of structures observed in slow wind

[Perrone et al. 2016]
- Current sheets,
- Solitons, 
- Shocks,
- Magnetic holes,
- compressible vortices, 
with kperp >> k||

8 Perrone et al.
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Fig. 5.— Example of linearly polarized compressible soliton-like
structure, centered at 02:10:42.5 UT. The panels are the same as
in Figure 4.

structures, n (black), determined by using the timing
method (see Section 4.2.1), of v0 (red) and of b0 (blue).
Moreover, the black-dashed lines indicate the plane of the
structures. Both structures have n perpendicular to b0.
If n of the magnetic hole is nearly aligned with the solar
wind flow speed in (x, y)–plane (⇥nV? = 3� ± 8�), n of
the magnetic soliton is oblique to it (⇥nV? = 55� ± 20�).
The propagation velocity of the structures along n in
the plasma rest frame (see Section 4.2.2) is V0 = (8 ±
64) km/s for the hole and V0 = (150 ± 177) km/s for
the soliton. Both structures are simply convected, in the
limit of errors, by the wind.
The normal to the structures was determined assum-

ing that the structure is locally planar, i.e. that the
hole and the soliton may have an infinite front in the
plane perpendicular to n, which includes B0 (see pan-
els (e)). However, this front seems to be perturbed or
finite, especially in case of the magnetic hole. Indeed
from Figures 4(a) and (b) one can see that the di↵erent
satellites observe di↵erent amplitudes: satellite C2 sees
the event first and the largest amplitude, then, C3 and
C4 see the same signal, nearly at the same time, and
the smallest amplitudes, and C1 is the last to observe
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Fig. 6.— Example of linearly polarized compressible shock-like
structure, centered at 01:17:44.9 UT. The panels are the same as
in Figure 4.

the signal, seeing a large amplitude, but smaller than on
C2. Such variation in amplitude cannot be explained by
an infinite plane; in that case, all satellites would see the
same amplitude in each point of the plane. Therefore, the
structure is not perfectly planar. If the magnetic hole is
a cylinder (or a cigar) with an axis along B0, variations
of the amplitude from one satellite to another is related
to the fact that di↵erent satellites cross the structure at
di↵erent distances from its axis. Along the axis the sig-
nal is expected to be the same, as it is indeed observed
on C3 and C4, separated along B0 by ⇠ 100 km.
In the case of the magnetic soliton, the amplitudes of

the magnetic fluctuations (see Figure 5(b)) are nearly the
same on the four satellites, indicating that the topology
of the structure is not far from the planar front. This
front is going through C2 and C4 in (x,y)–plane (see
panel (d)). Note that these satellites observe the same
signal at the same time.
To conclude on the geometry of the discussed com-

pressible structures, a comparison of the signals on the
four satellites with di↵erent geometrical models of holes
and solitons should be done (a subject of our future
work).

n V
B

Soliton dB||Current sheet dB⊥



Compressible vortices (at high ion beta)
[Perrone et al. 2016]10 Perrone et al.
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Fig. 9.— Example of compressible vortex-like structure, centered
at 00:31:10.4 UT. Panel (a): modulus of the large scale magnetic
field observed by the four Cluster satellites (di↵erent style lines).
Panel (b): components of magnetic fluctuations defined by eq. (12),
in minimum variance frame. The maximum direction is in green,
the intermediate in red and the minimum in black. The time of
each satellite is shifted taking into account the time delays with
respect to C1. Panel (c): same representation of panel (b), but
in BV -frame. Panel (d): modulus (black-dashed line) and com-
ponents (in BV -frame) of the current density. The vertical black-

dashed lines indicate the �⌧
0
of the structure. Panels (e) and (f):

Configuration of Cluster (diamonds) in BV -frame. The arrows
indicate the direction of the normal (black), local flow (red) and
local magnetic field (blue), while the black-dashed lines represent
the plane of the structure.

(Gustafsson et al. 1997). In our case, the mean plasma
density is about 25–30 cm�3. Therefore, this method
cannot be applied for this particular time interval.
The normal of the structure is quasi-perpendicular to

b0 (⇥nB = 83� ± 6�) and it is almost aligned with v0
(⇥nV? = 15� ± 11�), as observed in panels (d) and (e).
Therefore, the plane of the structure contains b0 and it
is perpendicular to v0 (see panel (e)). Moreover, the
current density, J, shown in panel (c), is almost per-

pendicular to b0. The velocity of propagation in the
plasma frame is V0 = �(172 ± 58) km/s. This cor-
responds to Mach numbers MF = V0/VF = 2.8 and
MA = V0/VA = 4.9.
A conclusive interpretation of this structure is di�cult

without high resolution density and temperature mea-
surements. However, its strongly compressible nature
and high values of Mach numbers are compatible with
the fast magnetosonic shock wave. Among 109 events,
we have found only 2 examples of such shock waves.

3.2.2. Alfvénic structures

Together with compressible structures (such as holes,
solitons and shocks), we have detected as well Alfvénic
structures (�B? > �Bk), which have localized, more or
less pronounced, compressible fluctuations.

Current sheet— The first example of an Alfvénic struc-
ture is shown in Figure 7 (the format of the figure
is the same as for the previous examples). Here, the
principal variation of the magnetic field is �by; �bx has
also regular variation but with small amplitude, while
�bz ' 0 (see panel (b)). The 3 components reduce (al-
most) to zero in the center of the structure, where the
large scale magnetic filed has its local minimum (panel
(a)). This is a property of a current sheet. J is essen-
tially parallel to b0 (panel (c)). The normal to the cur-
rent sheet n is perpendicular to b0, and it is oblique
to the Vsw, ⇥nV? = 25� ± 14� (panels (d) and (e)).
Its thickness, estimated from the four satellites analy-
sis (see 4.2.1 for more details), is ⇠ 9⇢p. The four satel-
lites observe the same amplitudes of the fluctuations (see
panel (b)), that is consistent with the planar geometry.
The velocity of this structure in the plasma frame is
V0 = (24± 127) km/s. Therefore, it is convected by the
flow, as expected for a current sheet. It is observed for
�p ' 1 and anisotropy A ' 0.6. 10 examples of current
sheets are found in the subset of 109 structures, charac-
terized by �p . 1 and Tk > T?. Di↵erent characteristic
sizes are found, from ⇠ 4⇢p to ⇠ 11⇢p.

Vortex structures— Finally, Figures 8 and 9 show two
examples of coherent structures, which look like vortices.
Both of them are characterized by a local increase of the
background magnetic field, observed by the four satellites
(panels (a)). The principal spatial gradients are r? �
rk, as shown by the timing analysis which gives n ? b0

(see panels (d) and (e) of Figure 8 and panels (e) and (f)
of Figure 9).
In the first case, Figure 8, the principal variations of �b

are almost in the plane perpendicular to b0 and the cur-
rent density, J, displayed in panel (c), is along b0, as in
the case of an Alfvén vortex (Petviashvili & Pokhotelov
1992; Alexandrova 2008). The variations of the mag-
netic magnitude and components from one satellite to
another are similar to what is observed for Alfvén vor-
tices in the Earth’s magnetosheath (Alexandrova et al.
2006) and compatible indeed with a cylindrical structure,
crossed by the four satellites along di↵erent paths.
The velocity of propagation along the normal and in

the plasma rest frame for this Alfvénic vortex is V0 =
�(95 ± 72) km/s with ⇥nV? = 30� ± 10�. The spatial
scale is about ⇠ 4⇢p. In terms of plasma parameters,
this vortex is observed for �p ' 1.3 and an isotropic ion
distribution.

B

n
V

[Jovanovic et al. 2020, APJ]:

Fluid theory of coherent vortices in the 
space plasmas with anisotropic electron 
and ion temperatures, and with arbitrary 
plasma beta. 

Generalization of Petviashvili & 
Pokhotelov (1992) vortices including the 
diamagnetic and finite Larmor radius 
effects via Braginskii’s collisionless stress 
tensor, and the compressional magnetic 
component via a generalized pressure 
balance.

(For more details see the paper and 
the PSP theory telecon on Nov.19, 2020.)



Sub-ion and electron scales 

§ Magnetic vortex at sub-ion scales 
§ Vortex duration ~1 s
§ Cluster separations ~200 km
§ kperp≫k||

Kinetic turbulence is filled with coherent structures ~ vortices

[Alexandrova et al. 2020, arXiv]

§ Cluster GI 2015 data: 
§ C3-C4 at 7 km distance
§ STAFF in burst mode (360 vec/s)

§ Electron scales are resolved for the 1st time 
in the solar wind in time and in space: duration 
~0.05 s, scale ~5 km scale (several re)
§ Can we describe them by EMHD non-linear 
vortices associated with oblique whistlers 
[Jovanović et al. 2015, Physica Scripta]?



To summarize
Notwithstanding the complexity of space plasma turbulence:
§ a certain degree of generality
§ similarities with incompressible neutral fluid turbulence
Results:
1. We observe a general spectrum of magnetic fluctuations up to electron scales (ld ~ re)
2. Intermittency: not only planar coherent structures, but also magnetic vortices up ld
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Here A0 is a constant amplitude, Ji is the Bessel function of ith
order, � �r x y2 2 is the radial variable in the plane of the
vortex, and B H� tan , with γ the angle between the normal to
the plane (x, y) and B0. The vortex radius a represents the
radius of the circle where the fluctuations are concentrated. To
ensure the continuity of the magnetic field components at
r = a, k is chosen to be one of the roots j1,l of J1. The
comparison is done in Figure 5(d), for k = j1,3 ; 10.17,

A0 = 0.27 in normalized units, and α = 0, i.e., the Alfvén
vortex has a monopole topology and it is static in the plasma
frame. This fitting corresponds to the trajectory of the satellite
across the center of the vortex, with a small angle of 13° to the
direction of the intermediate variance emed (or the x-axis of the
vortex model).
One can see that the monopole Alfvén vortex model (dashed

lines in Figure 5(d)) fits the observations (solid lines) well. The
small deviations can come from (i) the fact that the filter
(Equation (2)) is far from ideal, and (ii) a superposition of the
neighboring events on the studied vortex-like structure.
We estimate the radius of the vortex a (that is half the extent

of magnetic fluctuations that are fitted to the vortex model) to
be Δt3/2 ∼ 7 s. The scale of the strongest gradient within the
vortex (scale of the central field-aligned current filament) is of
the order of τ = 2 s. Thus, the temporal scales of the vortex are
around the break scale � �f 2.3b

1 s. Using the projection of the
solar wind velocity on the vortex plane ( ) ( )� e ex y, ,max med ,
450 km s−1, we obtain the vortex radius a ∼ 3150 km or 25.4λi
and 29.2 ρi; and the scale of the strongest gradient ℓ ∼ 900 km
or 7.3λi and 8.3 ρi.
However, in order to have confidence in the interpretation in

terms of the Alfvén vortex, a multi-satellite analysis should be

Figure 5. Two examples of coherent energetic events presented in the minimum variance frame calculated over time intervals of 30 s shown here. Left panels: current
sheet detected at 13:29:46: (a) raw data, (c) fluctuations defined by Equation (2) in the frequency range [0.06, 0.6] Hz; duration Δt0 ; 3 s. Right panels: signatures of
an Alfvén vortex-like structure at 13:42:27: (b) raw data, (d) fluctuations defined in the frequency range [0.1, 0.4] Hz superposed on the monopole Alfvén vortex
model from Petviashvili & Pokhotelov (1992); duration Δt3 ; 14 s.
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Open issues & projects  
§ Topology of coherent structures across the cascade? More systematic study is needed…  

§ under different plasma conditions 
§ at different radial distances

§ Filling factor? 
§ Stability? 
§ Interaction of charged particles with coherent structures ⇒ heating of the solar wind?

§ PHD project of Alexander Vinogradov, IKI-LESIA/SU, 2020-2023
§ Energy transfers and dissipation? Complete parametrisation of turbulent spectrum?

§ New measurements closer to the Sun by Parker Solar Probe and Solar Orbiter will tell us how the 
picture shown here may change…   

Parker Solar Probe Solar Orbiter


